

Солнечная система

Общая структура Солнечной системы

Облако Оорта

Долгопереодичкские кометы

Солнце

Пояс Койпера

Планеты

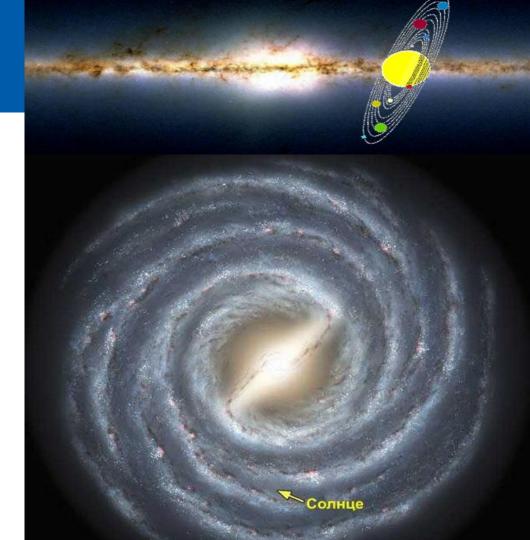
Солнечная система — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, вращающиеся вокруг Солнца. Сформировалась путём гравитационного сжатия газопылевого облака примерно 4,57 млрд лет назад.

Примерные основные характеристики:

1 001 1 M

Macca	1,0014 M _⊙
Возраст	4,57 млрд лет
Наклон к плоскости Млечного пути	60°
Расстояние до галактического центра	27 тыс. св. лет
Период обращения	250 млн лет
Орбитальная скорость	240 км/с
Граница гелиосферы	120 a.e.
Радиус сферы Хилла	1 св. год

Состав Солнечной системы


Солнце Планеты Карликовые планеты Спутники планет и карликовых планет

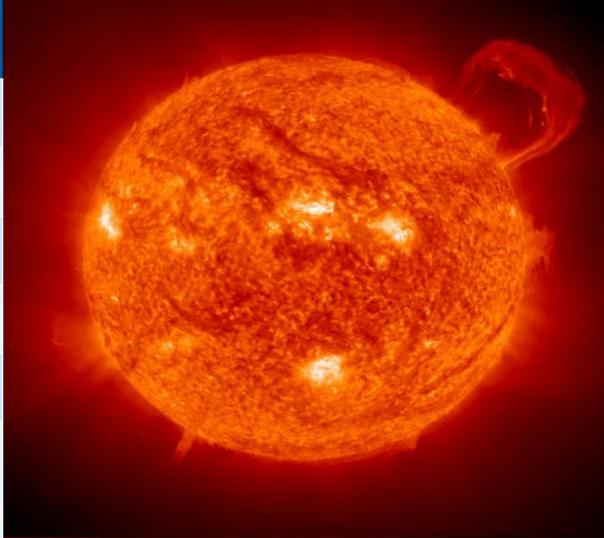
Малые тела Солнечной системы

Состав Солнечной системы

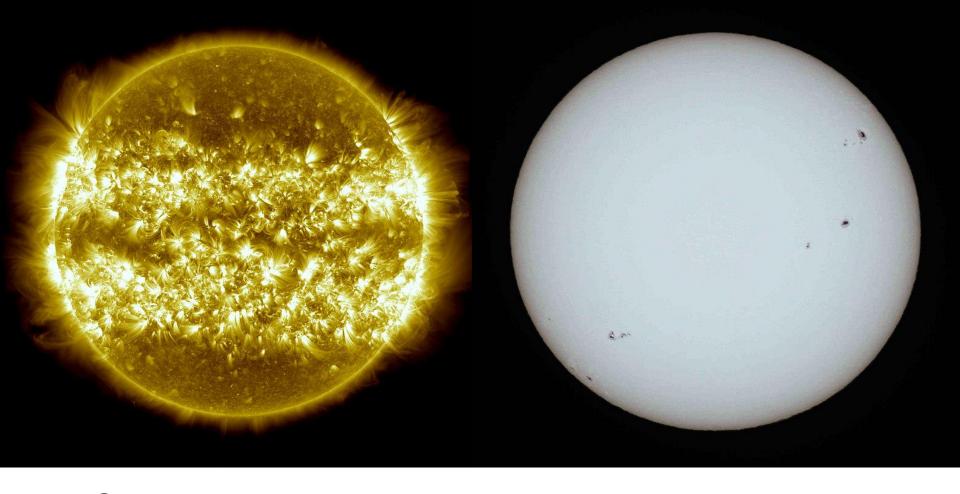
Звёзды	1
Планеты	8
Карликовые планеты	5
Спутники планет (из них сферической формы)	185 (19)
Общее количество спутников	525
Количество известных малых тел	Ок. 800 000
Из них кометы	Ок. 4000

 Солнечная система – составная часть
 галактики Млечный
 Путь, рукав Ориона

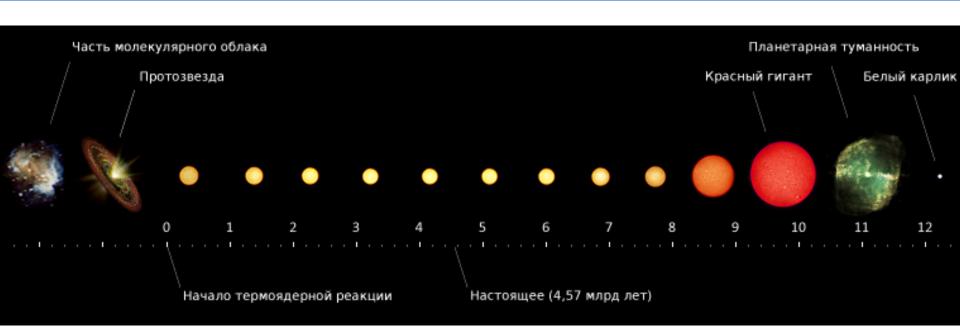
СОЛНЦЕ — ЗВЕЗДА СОЛНЕЧНОЙ СИСТЕМЫ


Солнце

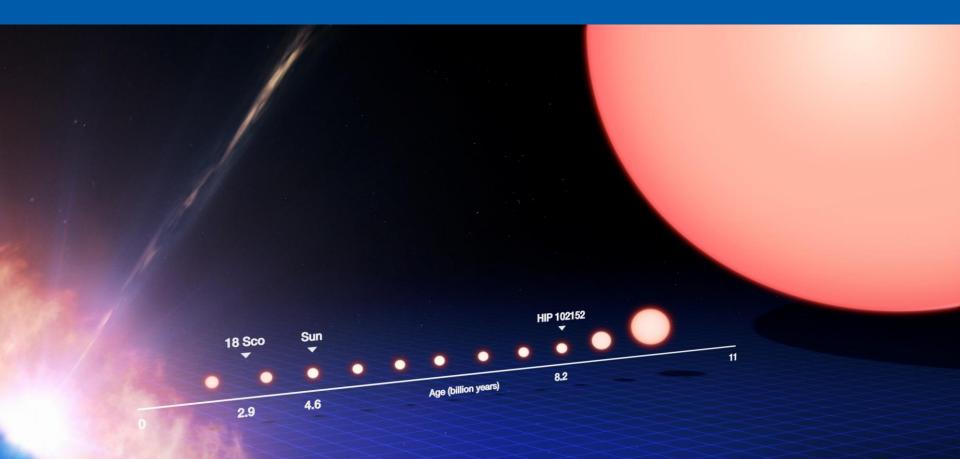
Спектральный класс	G2 (жёлтый карлик)
Звёздное население	I
Macca	2·10 ³⁰ кг
Экваториальный радиус	7·10 ⁸ м
Средняя плотность	1,4 г/см ³


Ускорение свободного падения на экваторе

 $274 \text{ m/c}^2 (28g)$

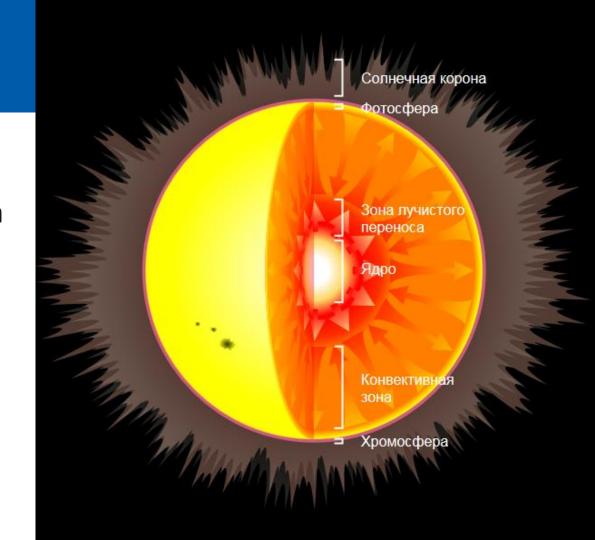


- Солнце самый массивный объект Солнечной системы (99,8% общей массы). На Юпитер и Сатурн приходится 90%, а на Уран и Нептун 9% остатка.
- Орбиты объектов вокруг Солнца описываются законами Кеплера. Согласно им, каждый объект движется по эллипсу, в одном из фокусов которого находится Солнце.
- Наряду со светом, Солнце излучает непрерывный поток заряженных частиц (плазмы), известный как солнечный ветер. Этот поток частиц распространяется со скоростью примерно 1,5 млн км/ч и создаёт межпланетную среду на расстоянии по крайней мере 100 а.е. от Солнца.



Солнце в рентгеновском и в видимом спектре

Эволюция Солнца



Эволюция Солнца

Структура Солнца

- Ядро
- Зона лучистого переноса
- Конвективная зона
- Атмосфера
 - Фотосфера
 - Хромосфера
 - Солнечная корона
 - Солнечный ветер

Спутник-2	1957	Первое наблюдение Солнца за пределами атмосферы	
Луна-1 и Луна-2	1959	Обнаружение солнечного ветра опытным путём	
Pioneer-5, 6, 7, 8, 9	1960-1968	Изучение солнечного ветра	
Helios-1, 2	1970-е	Наблюдение за Солнцем с гелиоцентрических орбит	
Apollo Telescope Mount	1973	Открытие коронального выброса массы	
SolarMax	1980-1989	Изучение солнечных вспышек	
Ulysses	1990-2008	Изучение Солнца вне плоскости эклиптики	
Yohkoh	1990-2001	Изучение рентгеновского изучения Солнца	
SOHO	C 1995	Исследования Солнца во всех диапазонах волн	
SDO	C 2010	Исследования Солнца во всех диапазонах волн	
Genesis	2001-2004	Доставка на землю образцов солнечного ветра	
Hinode	C 2006	Исследование солнечной короны	
STEREO	C 2006	Два аппарата для получения стереоизображений Солнца	
Коронас-Фотон	C 2009	Круглосуточный мониторинг солнечной активности	

(Запуск – 12 августа 2018)

Ближайшие к Солнцу объекты: Кометы

Известны около 1500 комет с перигелием меньшим 0,055 а.е. (почти треть всех известных комет). Их большая часть объединены в семейства: Крейца, Крахта, Марсдена, Майера.

Ближайшие к Солнцу кометы	Перигелий, а.е.
C / 2003 M2	0,0043
C / 2005 Y9	0,0043
C / 2006 A5	0,0043

Ближайшие к Солнцу объекты: Астероиды

Астероид	Перигелий, а.е.	
2005 HC4	0,0710	
2008 FF5	0,0789	
2006 HY51	0,0803	
(137924) 2000 BD ₁₉	0,0920	

Ближайшие к Солнцу объекты: Вулканоиды

Вулканоиды — гипотетические астероиды, которые могут иметь орбиту в динамически стабильной зоне между 0,08 и 0,21 а. е. от Солнца.

ПЛАНЕТЫ ЗЕМНОЙ ГРУППЫ

Планеты земной группы

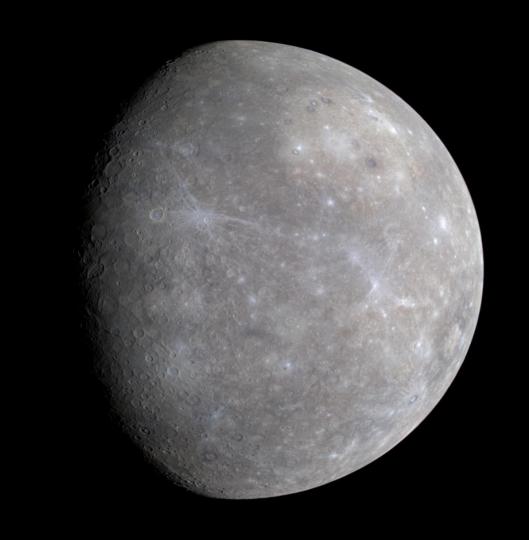
Меркурий

Сидерический 88 дней период

Средний радиус 2440 км 0,38 земно

Macca

на экваторе


до Солнца

0,38 земного 3,3·10²³ кг

0,055 земной Средняя плотность 5,4 г/см³

0,98 земной
Ускорение 3,7 м/с² (0,38g) свободного падения

Среднее расстояние 0,39 а.е.

Поверхность Меркурия

Снимок AMC «MESSENGER»

Меркурия по диску Солнца

2006 год

Исследовательские миссии

2018

после 2031

Mariner-10 1973

Messenger 2004

BepiColombo

Меркурий-П

Венера

Сидерический период Средний радиус

Macca

падения на

Солнца

6050 км

225 дней

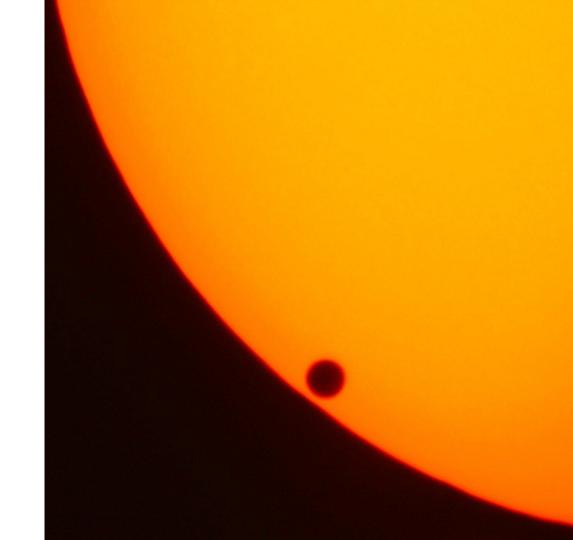
0,94 земного 4,9·10²⁴ кг

0,86 земной

 $5,2 \text{ r/cm}^3$ Средняя плотность 0,95 земной

 $8,9 \text{ m/c}^2 (0,9g)$ Ускорение свободного

экваторе


0,72 a.e. Среднее расстояние до

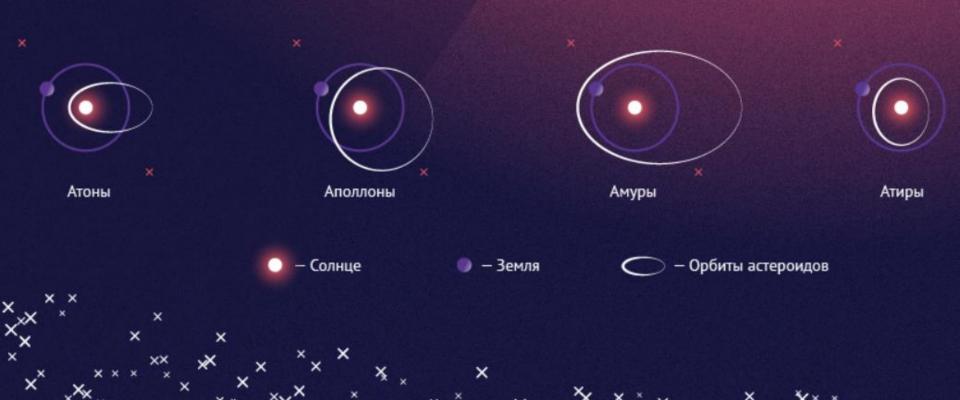
Поверхность Венеры Снимок АМС «*Венера – 13*»

Венера и Солнце

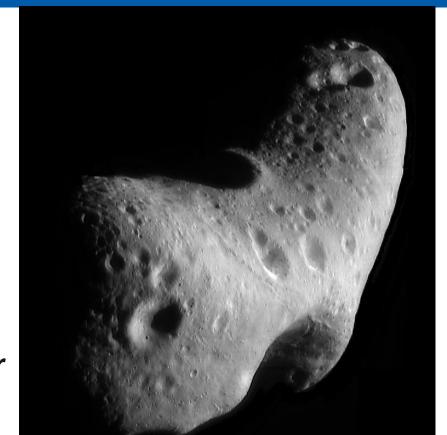
Венера-1	1961	Pioneer Venus 2	1978
Mariner-2	1962	Венера-13	1981
3онд-1	1964	Венера-14	1981
Венера-2	1965	Венера-15	1983
Mariner-3	1965	Венера-16	1983
Венера-4	1967	Bera-1	1984
Mariner-5	1967	Вега-2	1984
Венера-5	1969	Magellan	1989
Венера-6	1969	Messenger	2004
Венера-7	1970	Venus Express	2005
Венера-8	1972	Akatsuki	2010
Mariner-10	1973	Венера-Глоб	2020
Венера-9	1975	Venus orbiter mission	2020
Венера-10	1975	VERITAS	2021
Pioneer Venus 1	1978	DAVINCI	2021
Венера-11	1978	Венера-Д	2025
Венера-12	1978		

Земля

• Самая крупная и плотная из планет земной группы


• Уникальная планета по целому ряду параметров (атмосфера, гидросфера, тектоника плит)

• Жизнь за пределами Земли до сих пор достоверно нигде не обнаружена


• Спутник Земли – Луна – единственный большой спутник планет земной группы

Вид Земли с Марса Снимок марсохода «Spirit»

ГРУППЫ ОКОЛОЗЕМНЫХ АСТЕРОИДОВ

(433) **Эрос**

NEAR Shoemaker

(251443) Итокава

(162173) Рюгу

Хаябуса-2

Луна

Сидерический период

Средний радиус

Macca

Средняя плотность Ускорение свободного падения

на экваторе Среднее расстояние до Земли

384 400 км 30 земных диаметров

27,3 дня

1740 км

7,2·10²² кг

0,012 земной

 $3,3 \text{ r/cm}^3$ 0,6 земной

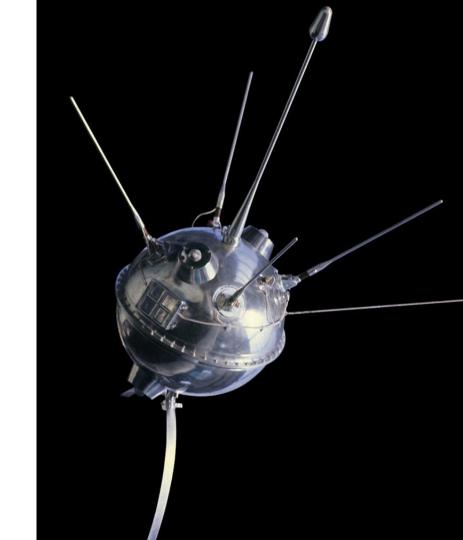
• Единственный естественный спутник Земли

•Самый близкий к Солнцу спутник Солнечной системы

• Единственный крупный спутник планет земной группы

• Единственный внеземной астрономический объект, где побывал человек

Земля и Луна


Луна с борта МКС

Видимая и обратная стороны Луны

Луна-1 — первая в мире АМС (1959)

Поверхность Луны

Луна-1	1959	3онд-5	1968	Kaguya	2007
Pioneer 4	1959	Зонд-6	1968	Чанъэ-1	2007
Луна-2	1959	Apollo-8	1968	Чандраян-1	2008
Луна-3	1959	Apollo-10	1969	LCROSS	2009
Ranger-7	1964	Apollo-11	1969	LRO	2009
Ranger-8	1965	Apollo-12	1969	ARTEMIS-P1 и -P2	2009
Ranger-9	1965	Луна-16	1970	Чанъэ-2	2007
Зонд-3	1965	Луна-17	1970	GRAIL	2011
Луна-9	1966	Луноход-1	1970	LADEE	2013
Луна-10	1966	Apollo-13	1970	Чанъэ-3	2013
Луна-11	1966	Луна-19	1971	Юйту	2013
Surveyor-1	1966	Apollo-14	1971	Чанъэ-5Т1	2014
Lunar Orbiter-1	1966	Apollo-15	1971	Чанъэ-5	2019
Луна-12	1966	Луна-20	1972	Чанъэ-4	2019
Lunar Orbiter-2	1966	Apollo-16	1972	Чандраян-2	2019
Луна-13	1966	Apollo-17	1972	Луна-25	2019
Lunar Orbiter-3	1967	Луна-21	1973	EM-1	2020
Surveyor-3	1967	Луноход-1	1973	ILN	
Lunar Orbiter-4	1967	Explorer-49	1973	SLIM	
Explorer-35	1967	Луна-22	1974	Чанъэ-6	2020
Lunar Orbiter-5	1967	Луна-24	1976	Луна-26	2020
Surveyor-5	1967	Hiten	1990	Луна-Ресурс-2	2020
Surveyor-6	1967	Clementine	1994	Луна-Ресурс-3	2023
Surveyor-7	1968	Lunar Prospector	1998	Луна-Ресурс-4	2023
Луна-14	1968	SMART-1	2003	EM-2	2023

Mapc

Сидерический период

Macca

Ускорение

на экваторе

до Солнца

687 суток

Средний радиус 3390 км 0,53 земного

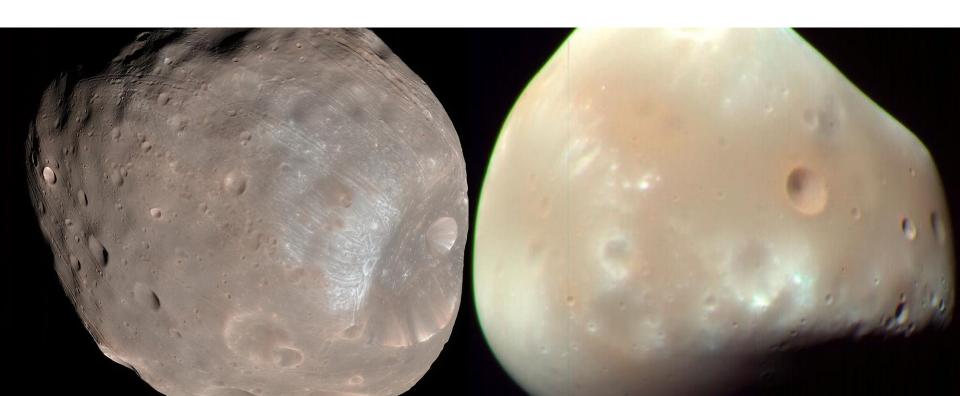
> 6,42·10²³ кг 0,11 земной

 $3,9 \text{ r/cm}^3$ Средняя плотность

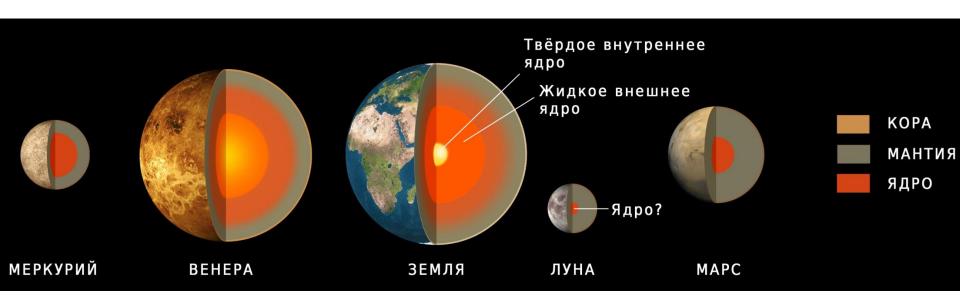
0,7 земной $3,7 \text{ m/c}^2 (0,38g)$ свободного падения

Среднее расстояние

1,52 a.e.

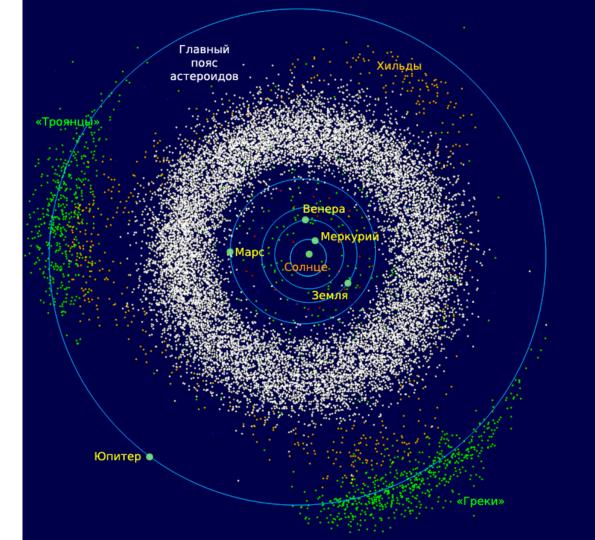


Поверхность Марса


Фобос и Деймос – спутники Марса

«Mars Reconnaissance Orbiter»

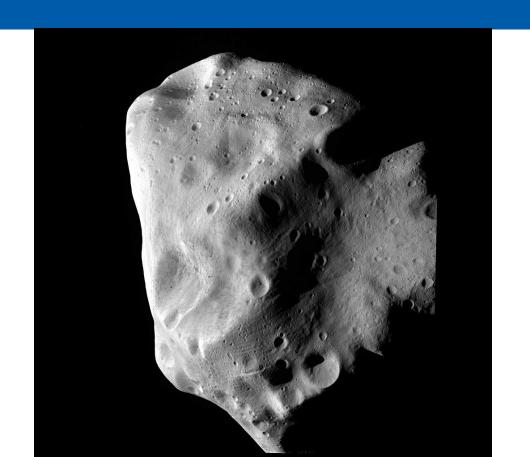
Mariner-4	1964	Mars Reconnaissance Orbiter	2005
Mariner-6	1969	Марсоход Curiosity	2011
Mariner-7	1969	Мангальян	2013
Mariner-9	1971	Mars Atmosphere and Volatile Evolution	2013
Mapc-2	1971	Trace Gas Orbiter	2016
Mapc-3	1971	InSight	2018
Mapc-4	1973	Mars Cube One	2018
Mapc-6	1973	Astrobiology Field Laboratory	
Viking-1	1976	SpaceX Red Dragon	
Viking-2	1976	Зкзомарс	2020
Фобос-2	1988	MetNet	2020
Mars Global Surveyor	1996	Mapcoxoд Mars 2020	2020
Mars Pathfinder и марсоход Sojourner	1996	Китайская марсианская миссия 2020	2020
Mars Odyssey	2001	Hope Mars	2020
Mars Express	2003	Мангальян-2	2020
Марсоход Opportunity	2003	Mars Sample Return Mission	2022
Марсоход Spirit	2003	Фобос Грунт-2	2024
Phoenix	2007	Northern Light	


Планеты земной группы: строение

ГЛАВНЫЙ ПОЯС АСТЕРОИДОВ

Пояс астероидов

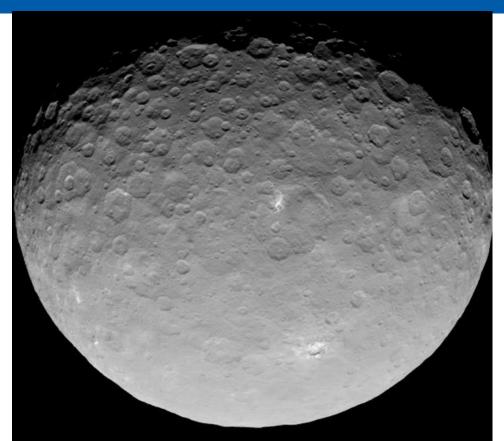
(253) Матильда



NEAR Shoemaker

(243) Ида и его спутник Дактиль

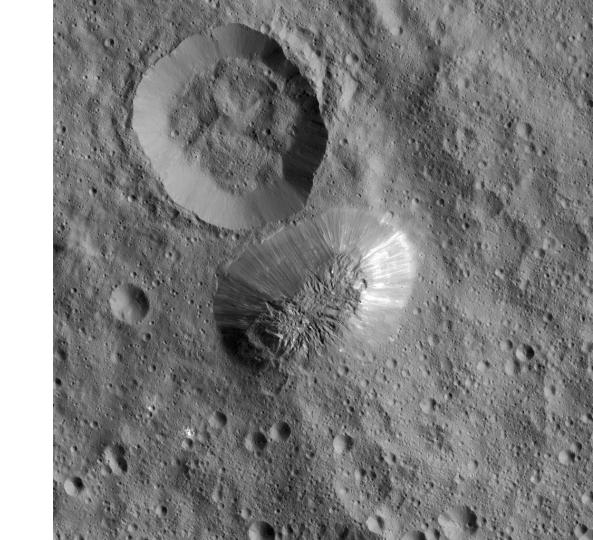
(21) Лютеция


Rosetta

(4) Веста – крупнейший астероид

Dawn

Карликовая планета (1) Церера — крупнейший объект пояса астероидов

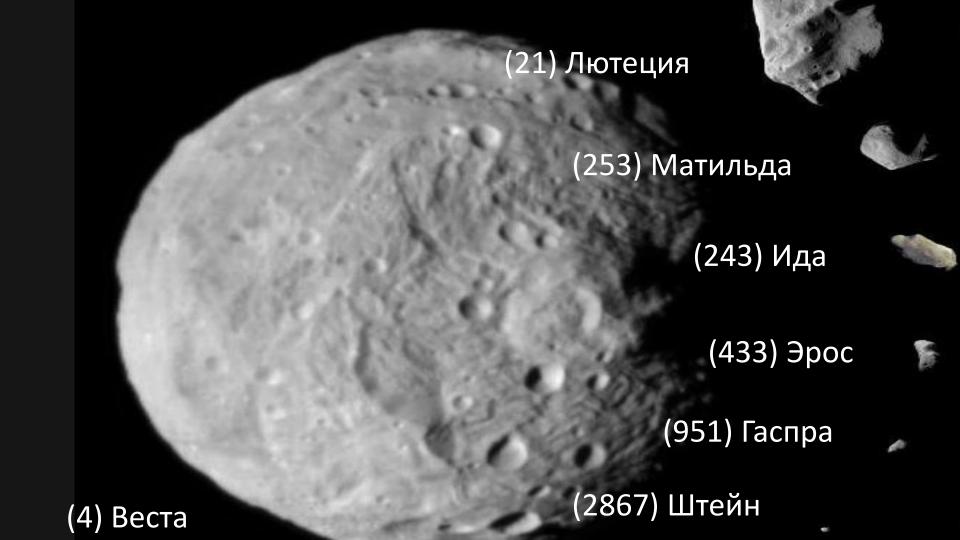

Dawn

Миссии АМС для изучения Весты и Цереры

Dawn	2007

Galileo	1989
NEAR Shoemaker	1996
Cassini	1997
Deep Space 1	1998
Stardust	1999
Хаябуса	2003
Rosetta	2004
New Horizons	2006
Dawn	2007
Чанъэ-2	2010
Хаябуса-2	2014
OSIRIS-REx	2016
AIDA	2020

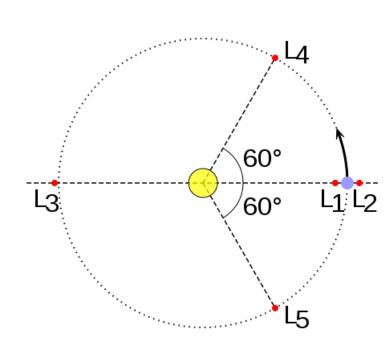
Поверхность Цереры «Dawn»



Суммарная масса Главного пояса = 4% массы Луны (0,06% массы Земли). Половина приходится на 4 крупнейших объекта – Цереру, Весту, Палладу и Гигею. Причём на одну только Цереру – треть.

4)Веста (1) Церера

ера Луна



Троянские астероиды

• Астероиды, находящиеся в окрестностях точек Лагранжа L₄ и L₅ планет Солнечной системы

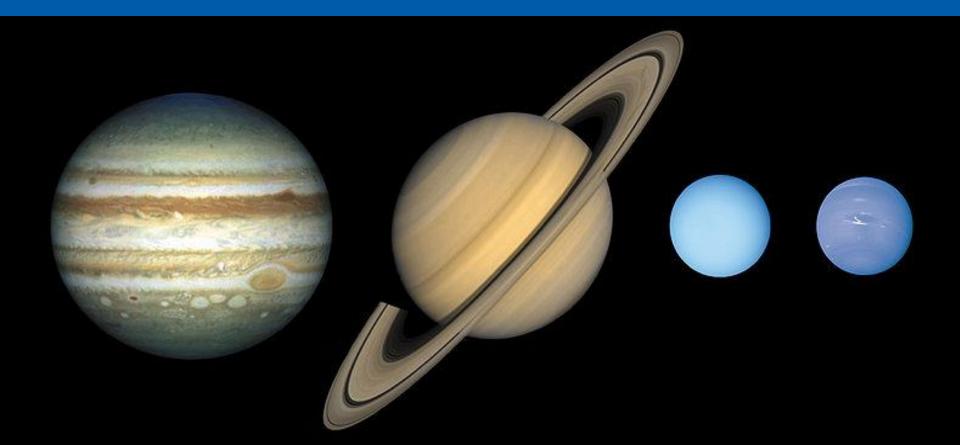
• Существуют у Земли, Марса, Юпитера, Урана и Нептуна

• Для Юпитера астероиды вокруг точки L_4 называют «Греки», а вокруг L_5 — «Троянцы»

Хильды

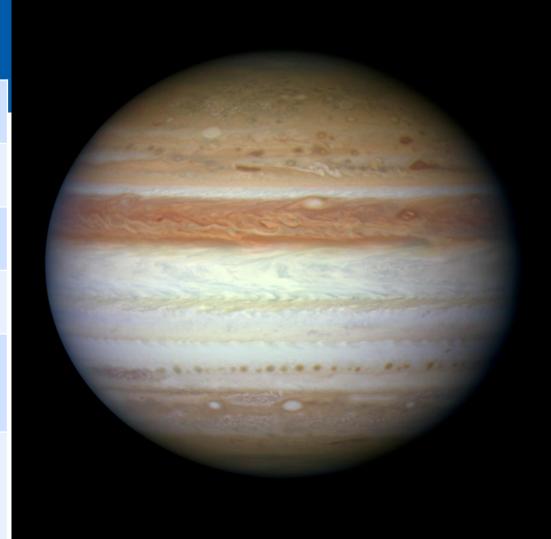
• Семейство астероидов, не являющихся фрагментами общего родительского тела

• Вращаются в орбитальном резонансе с Юпитером

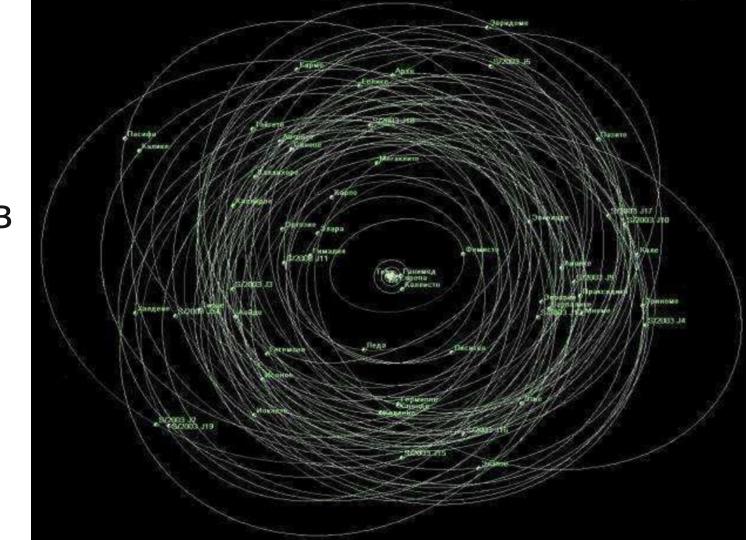

• Афелии расположены в точках Лагранжа L3, L4 и L5

• Названы в честь крупнейшего представителя семейства – астероида (153) Хильда

ПЛАНЕТЫ – ГИГАНТЫ



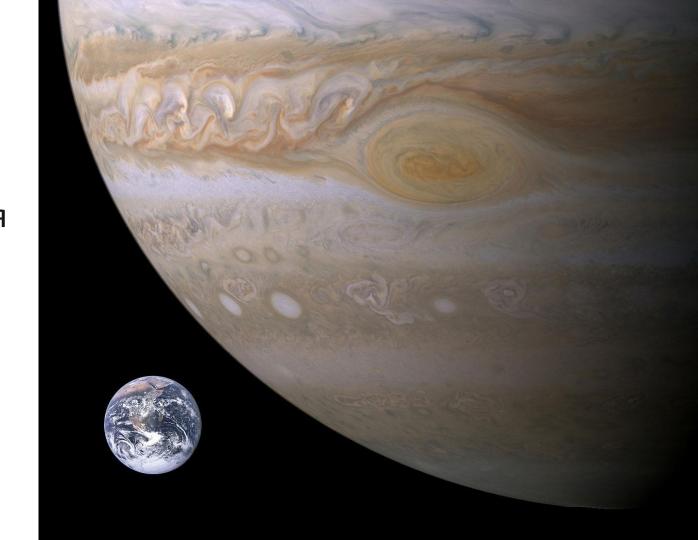
Планеты – гиганты



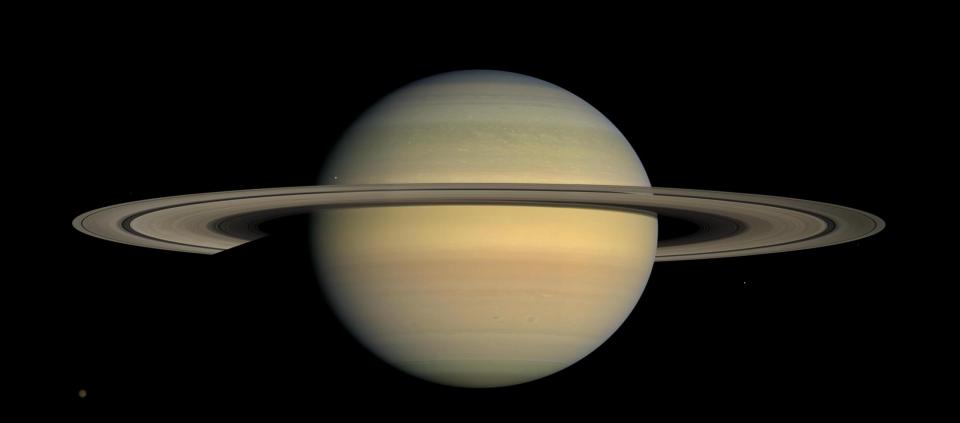
Юпитер

Сидерический период	11,9 лет
Средний радиус	69 900 км 11 земных
Macca	1,89·10 ²⁷ кг 318 земных
Средняя плотность	1,33 г/см ³ 0,24 земной
Ускорение свободного падения на экваторе	24,8 м/с ² (2,5g)
Среднее расстояние до Солнца	5,2 a.e.

Орбиты спутников Юпитера


Галилеевы спутники

Ио, Европа, Ганимед и Каллисто



Юпитер и Земля

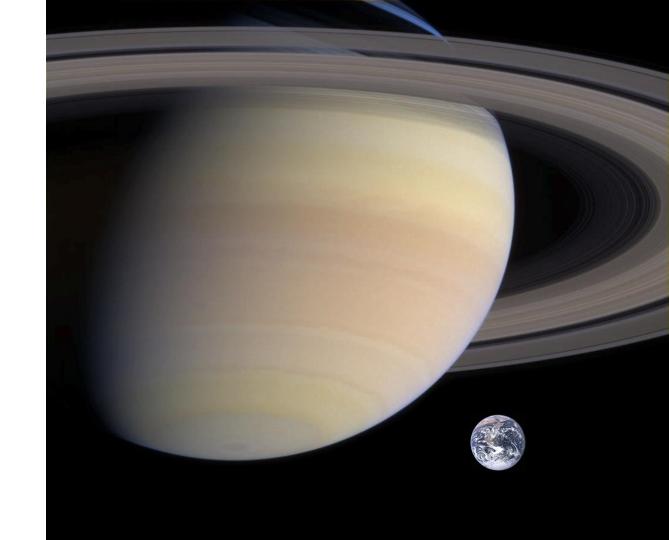
Pioneer-10	1972
Pioneer-11	1973
Voyager-1	1977
Voyager-2	1977
Galileo	1989
Ulysses	1990
Cassini	1997
New Horizons	2006
Juno	2011
Europa Jupiter System Mission	2020
Лаплас — Европа П	2020
Io Volcano Observer	2021
Jupiter Icy Moon Explorer	2022

Сатурн

Сатурн

Сидерический период	29,5 лет
Средний радиус	58 200 км 9 земных
Macca	5,68·10 ²⁶ кг 95 земных
Средняя плотность	0,69 г/см ³ 0,13 земной
Ускорение свободного падения на экваторе	10,44 m/c ² (1,06g)

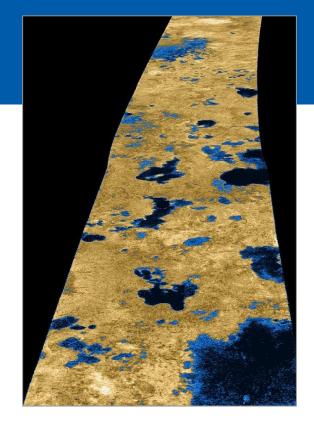
11,1 a.e.

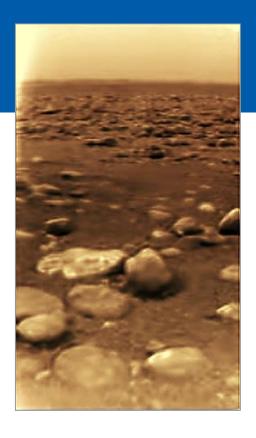

Среднее расстояние

до Солнца

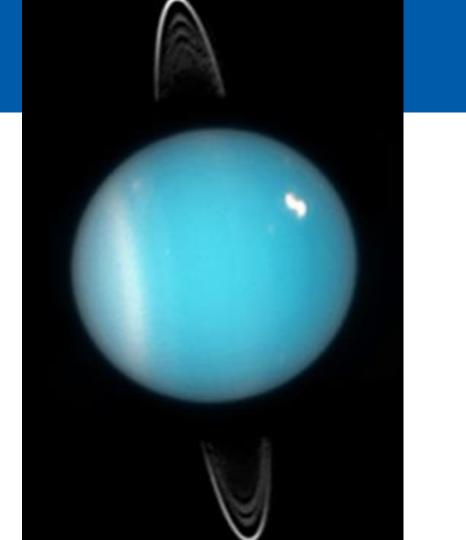
Вид Сатурна в телескоп с Земли

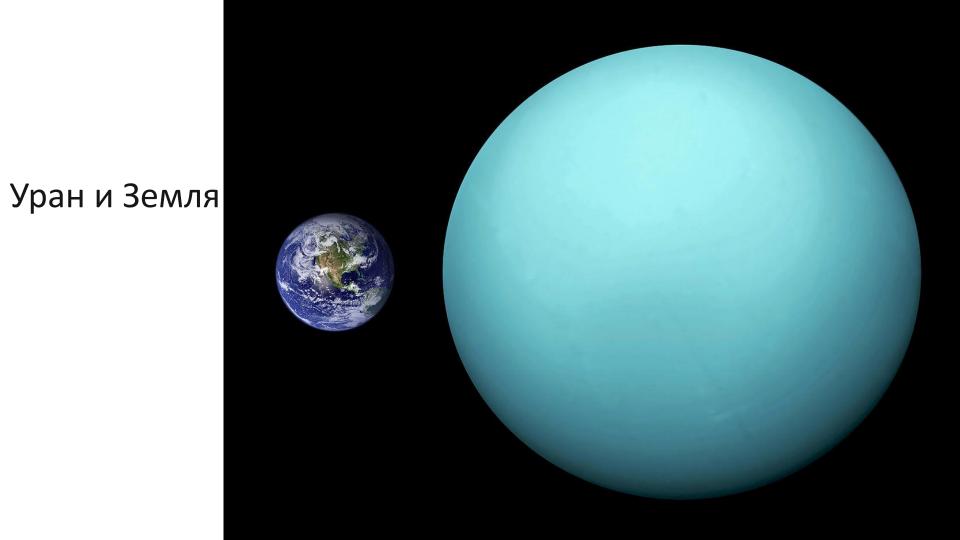
Сатурн и Земля

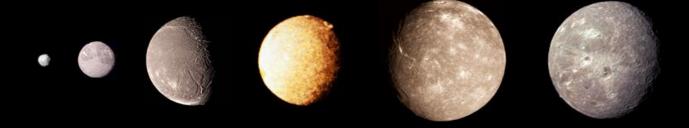

Кольца Сатурна с расстояния 1,8 млн км


Спутники Сатурна

Озёра Титана «Кассини»




Поверхность Титана «Гюйгенс»

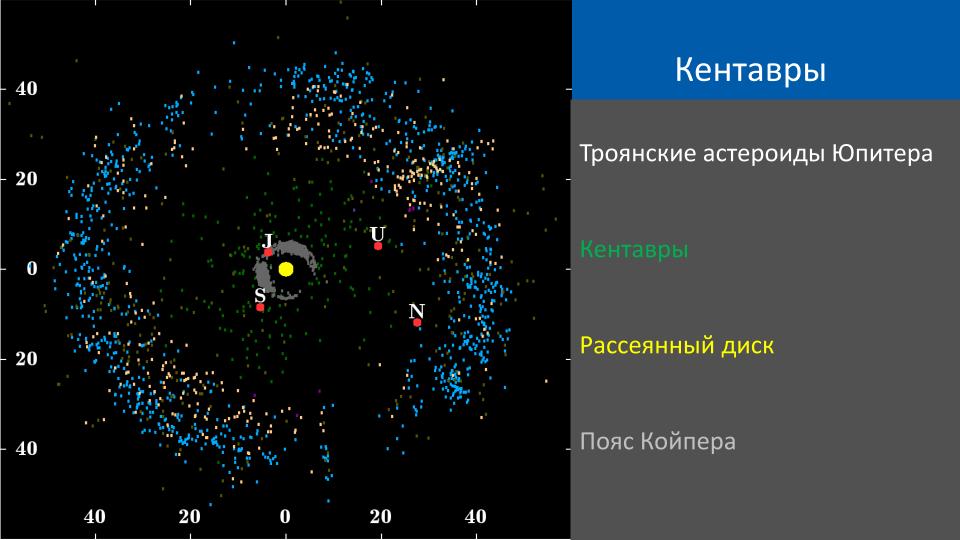

Pioneer-11	1973
Voyager-1	1977
Voyager-2	1977
Cassini–Huygens	1997
Titan Saturn System Mission	2020

Уран

Сидерический период	84 года
Средний радиус	25360 км 4 земных
Macca	8,68·10 ²⁵ кг 14,6 земных
Средняя плотность	1,27 г/см ³ 0,23 земной
Ускорение свободного падения на экваторе	8,87 m/c ² (0,87g)
Среднее расстояние до Солнца	19 a.e.

Маб, Меранда, Ариэль, Умбриэль, Титания, Оберон

Титания – крупнейший спутник Урана

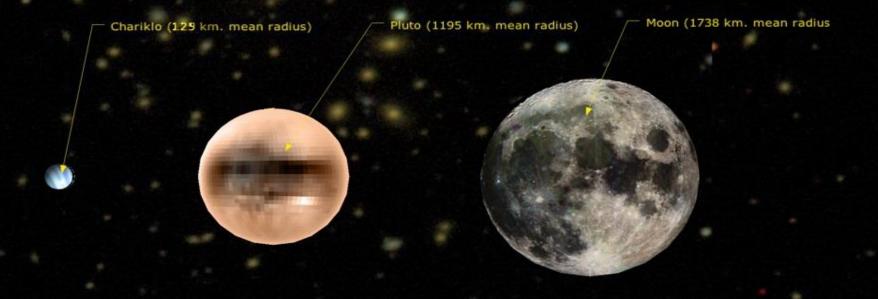


Миссии АМС для изучения Урана

2020-2023

Voyager-2	1977		

Uranus orbiter and probe



Кентавры

• Кентавры – группа астероидов между орбитами Юпитера и Нептуна

• По физическим характеристикам представляют переходный класс между астероидами и кометами

• При сближении с Солнцем начинают проявлять кометную активность (возможно появление комы)

Харикло – крупнейший кентавр

Феба (спутник Сатурна) Возможно, бывший кентавр

«Cassini»

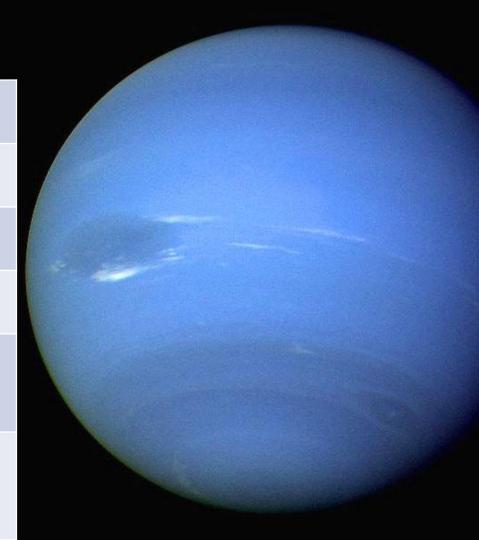
Нептун

Сидерический период

Macca

Средний радиус 24600 км

4 земных


165 лет

1,02·10²⁶ кг 17 земных

Средняя плотность 1,6 г/см³ 0,29 земной

7,29 земной 7,29 земной 11,15 м/с² (1,14g) падения на экваторе

30 a.e.

Среднее расстояние до Солнца

Облака Нептуна

Спутники Нептуна

Нептун и Тритон

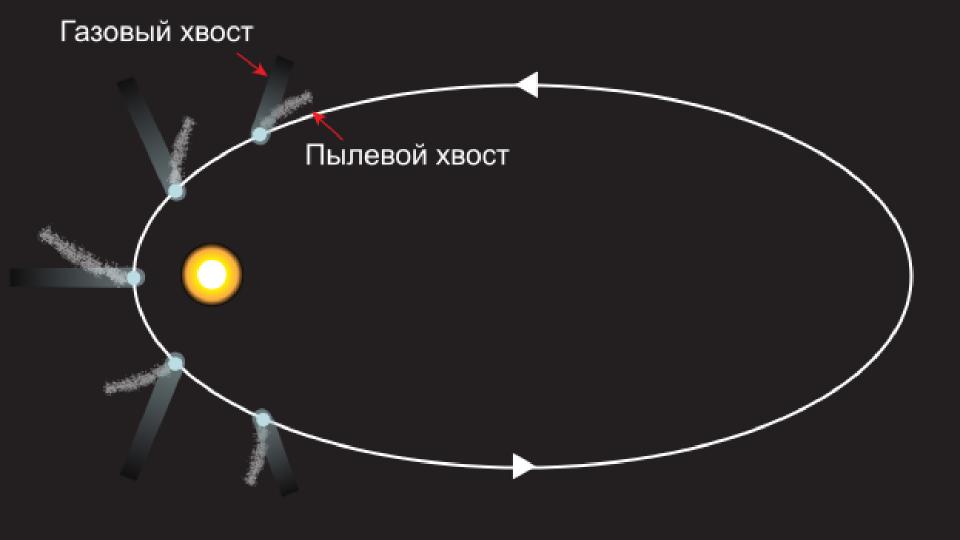
Миссии АМС для изучения Нептуна

IVIVICEVI	visy ici	rryrra
	4077	

Voyager-2 19//

Neptune Orbiter 2020-е

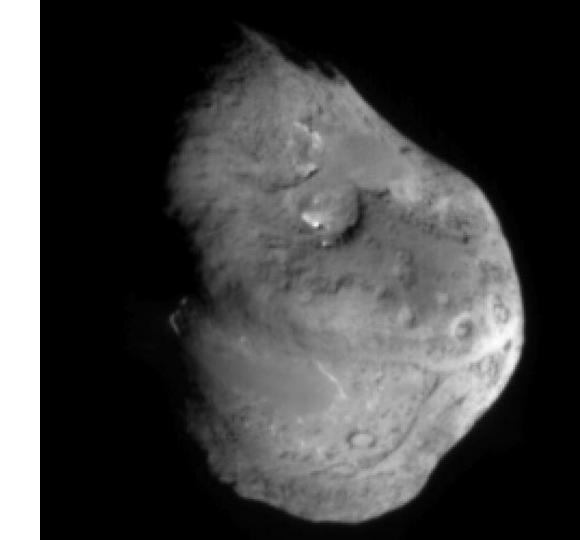
Коротко – периодические кометы


Короткопериодические кометы

• Небольшие небесные тела, обращающиеся вокруг Солнца по сильно вытянутым орбитам с периодом менее 200 лет

• При приближении к Солнцу образуют кому и иногда хвост из газа и пыли.

• Большинство короткопериодических комет входят в семейства Юпитера, Сатурна, Урана и Нептуна


Комета Галлея (семейство Нептуна)

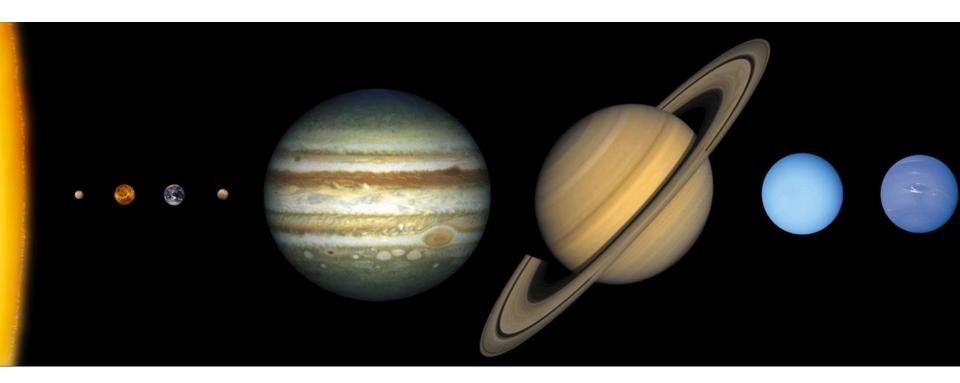
International Cometary Explorer	1978
Вега-1	1984
Вега-2	1984
Сакигакэ	1985
Giotto	1985
Суйсэй	1985
Ulysses	1990
Deep Space 1	1998
Stardust	1999
Rosetta	2004
Deep Impact	2005
Comet Hopper	

Комета Темпеля

«Deep Impact»

Комета Вильда

«Stardust»



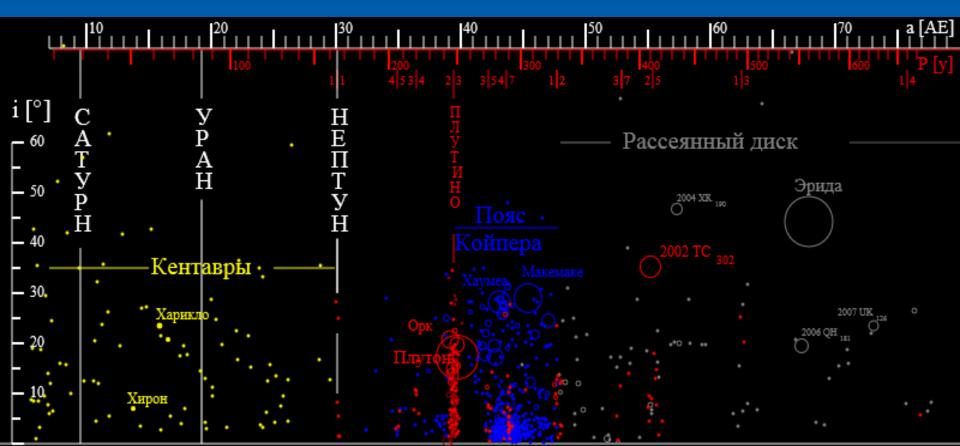
Комета Чурюмова-Герасименко

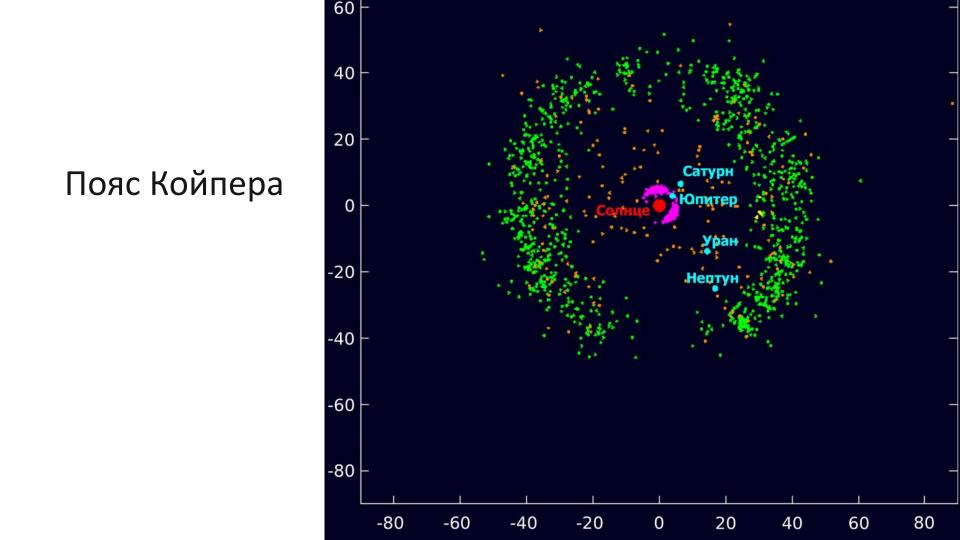
«Rosetta»

Планеты

Юпитер Нептун Земля Сатурн **Уран** Плутон Мимас Ариэль Энцелад Харон Луна **Умбриэль** Ио Тритон Тефия Диона Титания Европа Рея Оберон Ганимед Титан Япет Каллисто

ТРАНСНЕПТУНОВЫЕ ОБЪЕКТЫ


Транснептуновые объекты


Пояс Койпера Рассеянный диск Облако Оорта

Крупнейшие из известных транснептуновых объектов (THO)

Транснептуновые объекты

Пояс Койпера

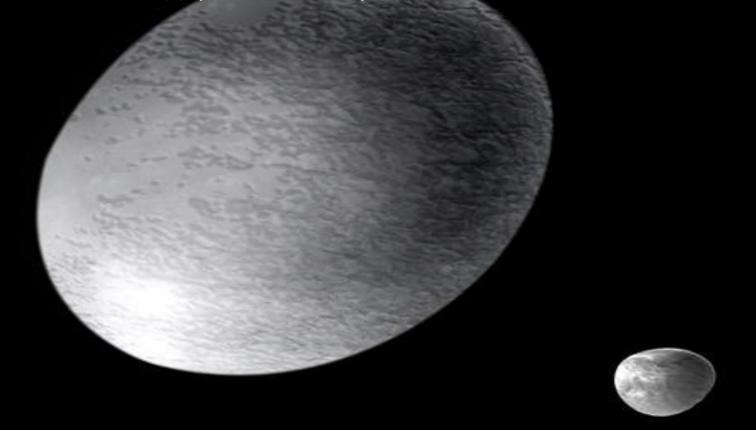
- Область Солнечной системы на расстоянии от 30 а.е. (орбита Нептуна) до 55 а.е. от Солнца
- Примерно в 20 раз шире и в 200 раз массивнее Главного пояса астероидов
- Состоит в основном из малых тел Солнечной системы, но содержит как минимум 4 карликовые планеты
- Объекты пояса Койпера состоят преимущественно из льдов
- Динамически стабилен не является источником комет

Карликовая планета Плутон крупнейший ТНО

«Новые горизонты»

Плутон и Харон – самые дальние объекты Солнечной системы, сфотографированные АМС.

Сидерический период – 248 лет


Миссии АМС для изучения Плутона

New Horizons

2006

Карликовая планета Хаумеа со спутниками глазами художника — самый быстровращающийся объект Солнечной системы.

Сидерический период 285 лет

Карликовая планета Макемаке глазами художника.

Сидерический период 306 лет

Крупнейшие объекты пояса Койпера

1500

1500

1200

1100

930

940

920

800

720

650

Название	Диаметр, км
Плутон	2390

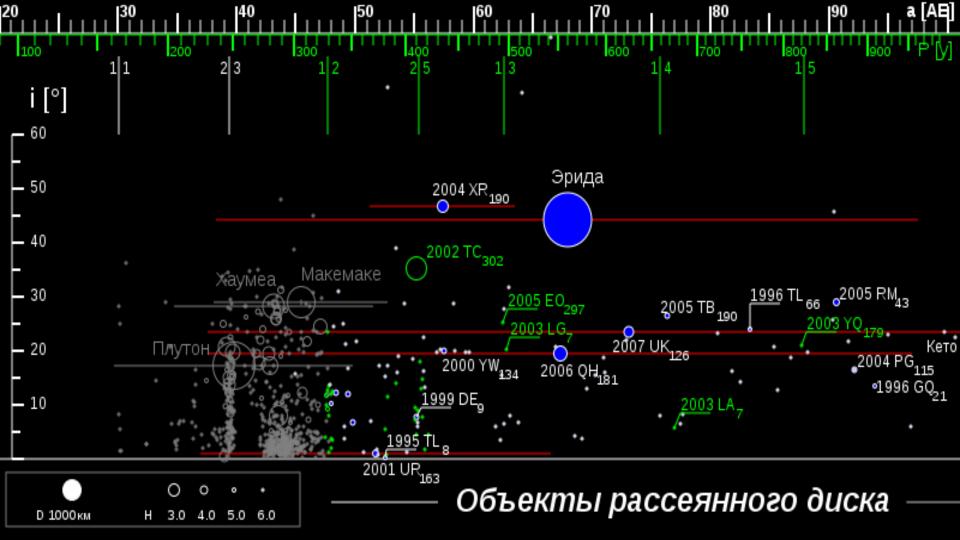
Хаумеа

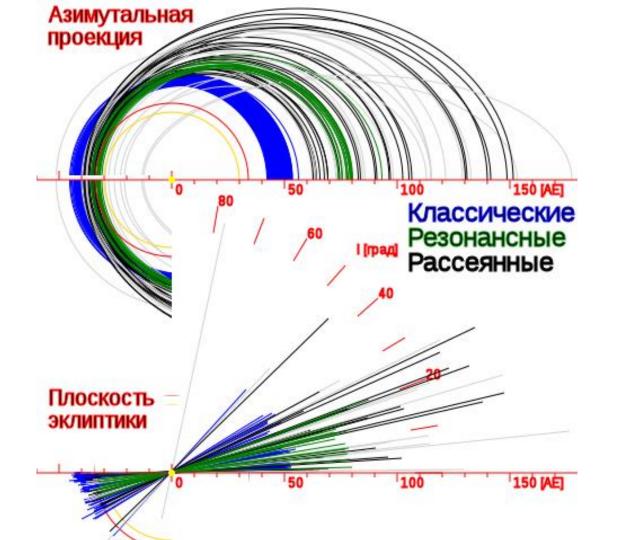
Макемаке

Харон

Квавар

2002 MS₄


Орк


Салация

2015 KH₁₆₂

Варуна

Иксион

Карликовая планета Эрида глазами художника. Открытие Эриды привело к «понижению» статуса Плутона.

Сидерический период 561 год

Другие объекты Рассеянного диска

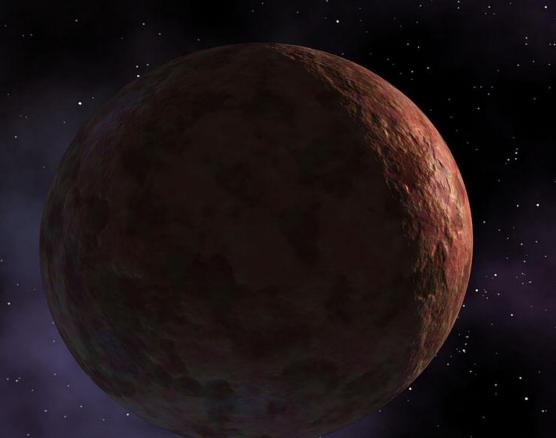
2007 OR₁₀ Диаметр 1500 км, кандидат в

карликовые планеты

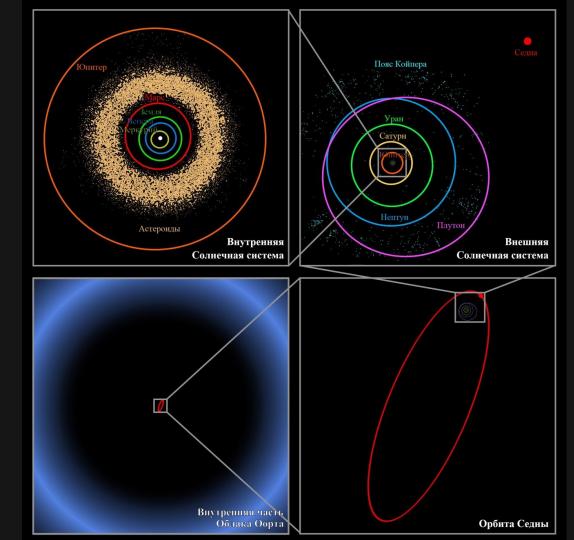
Диаметр 735 км, кандидат в карликовые

2013 FY₂₇ планеты

2004 XR₁₉₀ Кандидат в карликовые планеты


2002 XU₉₃

диске)


Имеет наклон к эклиптике 78°

(наибольший из известных в Рассеянном

Седна глазами художника. Сидерический период примерно 12000 лет

NASA/JPL

Седноиды

• Седноиды – транснептуновые объекты с перигелийным

•	расстоянием, превышающим 50 а.е., и большой полуосью, превышающей 150 а.е. Название Диаметр, км Перигелий, а.е. Афелий, а.е. Период, лет						
Название	Диаметр, км	Перигелий, а.е.	Афелий, а.е.	Период, лет			

76

65

936

2123

Кандидат в седноиды

12000

34000

превышак	ающей 150 а.е.					
Название	Диаметр, км	Перигелий, а.е.	Афелий, а.е.	Период, лет		
2012 VP ₁₁₃	600	80	441	4274		

1000

300

до 1100

(90377) Седна

V774104

2015 TG₃₈₇ Гоблин

Астероиды с наибольшим афелием

Название	Диаметр, км	Перигелий, а.е.	Афелий, а.е.	Период, лет
2014 FE ₇₂	250	39	3850	85600
2017 MB ₇	ок. 10	4,6	6081	168000

Миссии по исследованию дальнего космоса

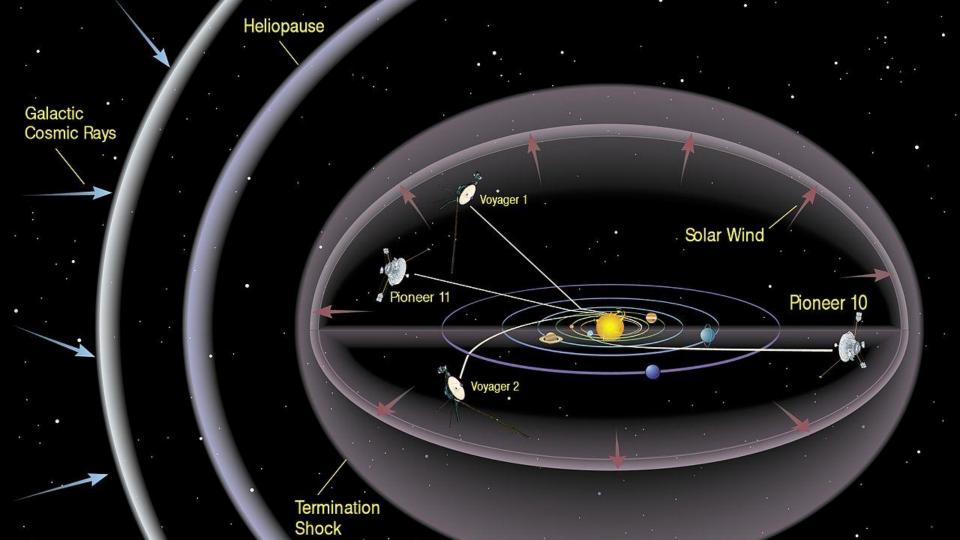
	•	•	достигший оянии 107 а.	•	космической	скорости.	Связь

ожидается выход за пределы гелиосферы.

1973 Связь потеряна в 1995

Pioneer-11

Voyager-1

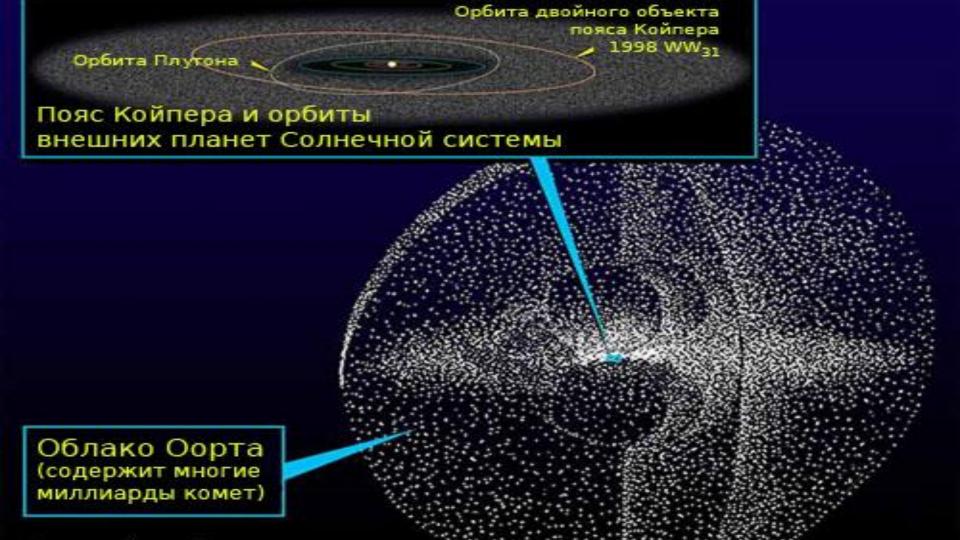

Voyager-2

1977 Самый быстрый космический аппарат в истории V=17 км/с. Самый

дальний из наблюдаемых космических аппаратов. Пересёк гелиосферную ударную волну в 2004. В 2013 покинул пределы гелиосферы и вышел в межзвёздное пространство. В 2018 находится на расстоянии 142а.е. от Солнца.

1977 Пересёк гелиосферную ударную волну в 2007. В 2018 г удалился на 118

а.е. от Солнца. Скорость относительно Солнца 15,4 км/с. В 2019-2020 г



Облако Оорта

• Гипотетическая сферическая область Солнечной системы, примерно в 1000 раз больше пояса Койпера и Рассеянного диска.

• Источник долгопериодических комет

• Внешняя граница облака Оорта определяет гравитационную границу Солнечной системы — сферу Хилла (радиус ок. 1 св. года)

Комета Делавана («Комета Войны»)

Самая долгопериодическая из сфотографированных комет Период обращения: 24 млн лет.

Фотография 1914 г.

Комета Лулинь

Период обращения: 19,5 млн лет.

Фотографии 2009 г

Объекты Солнечной системы

http://galspace.spb.ru/index410.file/6big.jpg

«Астрономия» Б.А. Воронцов-Вельяминов, Е.К. Страут

- ≻Единственный учебник по астрономии, который неизменно входит в федеральный перечень
- ≻Полностью соответствует новым требованиям ФГОС и ФК ГОС
- Учебник классический по структуре, современный по содержанию
- ▶ Разрешён для преподавания астрономии как в 10, так и в 11 классе

Состав УМК Астрономия: Базовый уровень

- ✓ Учебник
- ✓ Рабочая программа
- ✓ Методическое пособие
- ✓ Электронная форма учебника
- ✓ Электронный сервис «Классная работа»
- ✓ Проверочные и контрольные работы
- ✓ Атлас

Методическая служба по физике:

Опаловский Владимир Александрович

Пешкова Анна Вячеславовна

Opalovskiy.VA@rosuchebnik.ru

Peshkova.AV@rosuchebnik.ru

123308, Москва, ул. Зорге, д. 1 (495) 795-0535, 795-0545, info@rosuchebnik.ru rosuchebnik.ru росучебник.рф

Нужна методическая поддержка?

Методический центр 8-800-2000-550 (звонок бесплатный), metod@rosuchebnik.ru

Хотите купить?

Официальный интернет-магазин учебной литературы book24.ru

Отдел продаж sales@rosuchebnik.ru

Магазин электронных учебников lecta.ru

Хотите продолжить общение?

- youtube.com/user/drofapublishing
 B vk.com/ros.uchebnik

 - 👔 www.fb.com/rosuchebnik 🛛 👂 www.ok.ru/rosuchebnik

Остались вопросы?

Служба поддержки 8-800-700-64-83 (звонок бесплатный), help@rosuchebnik.ru